Logo
Overview

Solutions: Section 5.4

January 15, 2025
2 min read

Page 120: Figure it Out

Q1. Prime Factorisations

  • 64: 2×2×2×2×2×22 \times 2 \times 2 \times 2 \times 2 \times 2 (262^6)
  • 105: 3×5×73 \times 5 \times 7
  • 320: 32×10=25×2×5=26×532 \times 10 = 2^5 \times 2 \times 5 = 2^6 \times 5 (2×2×2×2×2×2×52 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5)
  • 1000: 10×10×10=(2×5)3=2×2×2×5×5×510 \times 10 \times 10 = (2 \times 5)^3 = 2 \times 2 \times 2 \times 5 \times 5 \times 5

Q2. Identify the number

Factors: one 2, two 3s, one 11. Number=2×(3×3)×11\text{Number} = 2 \times (3 \times 3) \times 11 =2×9×11= 2 \times 9 \times 11 =18×11=198= 18 \times 11 = \mathbf{198}

Q3. Three primes < 30 product 1955

Ends in 5, so 5 is a factor. 1955÷5=3911955 \div 5 = 391. We need two primes that multiply to 391. Try primes: 7 (no), 11 (no), 13 (no), 17. 391÷17=23391 \div 17 = 23. 23 is prime. Answer: 5, 17, 23.

Page 122: Figure it Out

Q1. Co-prime check via factorisation

a. 30 and 45 30=2×3×530 = 2 \times 3 \times 5 45=3×3×545 = 3 \times 3 \times 5 Common factors 3 and 5. No.

b. 57 and 85 57=3×1957 = 3 \times 19 85=5×1785 = 5 \times 17 No common factors. Yes.

Q2. Divisibility check via factorisation

a. 225 divisible by 27? 225=5×5×3×3225 = 5 \times 5 \times 3 \times 3 27=3×3×327 = 3 \times 3 \times 3 225 only has two 3s. 27 needs three 3s. No.

b. 96 divisible by 24? 24=2×2×2×324 = 2 \times 2 \times 2 \times 3 96=2×2×2×2×2×396 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 96 contains all factors of 24. Yes.