Logo
Overview

Solved Examples: Base Conversions

April 10, 2024
1 min read

Example 1: Converting to Mayan

Convert 45 to Mayan Numerals.

Solution:

  1. Determine the base: 20.
  2. Divide 45 by 20: 45÷20=2 remainder 545 \div 20 = 2 \text{ remainder } 5
  3. Top position (20s): 2 (Two dots \bullet\bullet)
  4. Bottom position (1s): 5 (One bar —)

Example 2: Converting to Base-5

Convert 34 to Base-5.

Solution:

  1. Powers of 5: 1, 5, 25.
  2. Largest power \le 34 is 25. 34÷25=1 remainder 934 \div 25 = 1 \text{ remainder } 9
  3. Next power is 5. 9÷5=1 remainder 49 \div 5 = 1 \text{ remainder } 4
  4. Last power is 1. 4÷1=44 \div 1 = 4
  5. Result: 1145114_5 (1×25+1×5+4×11 \times 25 + 1 \times 5 + 4 \times 1).

Example 3: Mesopotamian Addition

Add 1212 and 5050 in Base-60.

Solution:

  1. Convert to Base-10 sum: 12+50=6212 + 50 = 62.
  2. Convert 62 to Base-60. 62=1×60+262 = 1 \times 60 + 2
  3. Representation:
    • 60s place: 1 Wedge (\triangledown)
    • 1s place: 2 Wedges (\triangledown\triangledown)
    • Written: \triangledown \quad \triangledown\triangledown