Logo
Overview

Figure It Out: Parallelograms

April 10, 2024
1 min read

Page 96: Parallelogram Angles

Question: If one angle is 3030^\circ, find the others. Solution:

  • Adjacent angles sum to 180180^\circ. B=18030=150\angle B = 180^\circ - 30^\circ = 150^\circ.
  • Opposite angles are equal. C=30\angle C = 30^\circ, D=150\angle D = 150^\circ.

Page 102: Figure It Out

1. Find remaining angles:

  • (i) Parallelogram: Given 4040^\circ.
    • Opposite = 4040^\circ.
    • Adjacent = 18040=140180^\circ - 40^\circ = 140^\circ.
  • (ii) Parallelogram: Given 110110^\circ.
    • Opposite = 110110^\circ.
    • Adjacent = 7070^\circ.
  • (iii) Rhombus: Given 3030^\circ (half angle by diagonal?).
    • If diagonal makes 3030^\circ with side, whole angle = 6060^\circ.
    • Adjacent angle = 18060=120180^\circ - 60^\circ = 120^\circ.
  • (iv) Rhombus: Given 2020^\circ triangle base angle.
    • Diagonals intersect at 9090^\circ.
    • Third angle in small triangle = 180(90+20)=70180 - (90+20) = 70^\circ.
    • Vertex Angles: 4040^\circ (2×202 \times 20) and 140140^\circ (2×702 \times 70).

Page 107: Trapeziums

Question 3: Find remaining angles.

  • Left Figure: Angles between parallel lines sum to 180180^\circ.
    • 135135^\circ pair: 180135=45180 - 135 = 45^\circ.
    • 105105^\circ pair: 180105=75180 - 105 = 75^\circ.
  • Right Figure: 100100^\circ pair 80\rightarrow 80^\circ.

Question 5: Two rectangles PAIR and RODS. Find IOD\angle IOD.

  • Properties: Diagonals of rectangle bisect and are equal.
  • In rectangle RODS, diagonals intersect at O. ΔROD\Delta ROD isosceles logic applies.
  • Need specific diagram values to solve fully, but generally involves subtracting angles from 9090^\circ or using isosceles triangle properties at the intersection.