Logo
Overview

Solved Examples

April 10, 2024
1 min read

Example 1: The Tablecloth Lace

Problem: Akshi wants to put lace all around a rectangular tablecloth that is 3 m3\text{ m} long and 2 m2\text{ m} wide. Find the length of the lace required.

Solution:

  1. Identify the goal: Putting lace “all around” means we need to find the Perimeter.
  2. Identify the shape: It is a rectangle.
  3. Write the values: Length (ll) = 3 m3\text{ m}, Breadth (bb) = 2 m2\text{ m}.
  4. Apply Formula: Perimeter=2×(l+b)=2×(3 m+2 m)=2×(5 m)=10 m\begin{aligned} \text{Perimeter} &= 2 \times (l + b) \\ &= 2 \times (3\text{ m} + 2\text{ m}) \\ &= 2 \times (5\text{ m}) \\ &= 10\text{ m} \end{aligned}
  5. Answer: The length of lace required is 10 m.

Example 2: Running in the Park

Problem: Find the distance travelled by Usha if she takes three rounds of a square park of side 75 m75\text{ m}.

Solution:

  1. Distance of 1 round: This is the perimeter of the square.
  2. Formula: Perimeter = 4×side4 \times \text{side}.
  3. Calculate 1 round: 4×75 m=300 m4 \times 75\text{ m} = 300\text{ m}.
  4. Total Distance: She takes 3 rounds. Total Distance=3×300 m=900 m\text{Total Distance} = 3 \times 300\text{ m} = 900\text{ m}

Example 3: The Uncarpeted Floor

Problem: A floor is 5 m5\text{ m} long and 4 m4\text{ m} wide. A square carpet of sides 3 m3\text{ m} is laid on the floor. Find the area of the floor that is not carpeted.

Solution:

  1. Area of Floor (Rectangle): Afloor=5 m×4 m=20 m2A_{floor} = 5\text{ m} \times 4\text{ m} = 20\text{ m}^2
  2. Area of Carpet (Square): Acarpet=3 m×3 m=9 m2A_{carpet} = 3\text{ m} \times 3\text{ m} = 9\text{ m}^2
  3. Area Not Carpeted: Remaining Area=AfloorAcarpet=209=11 m2\text{Remaining Area} = A_{floor} - A_{carpet} = 20 - 9 = 11\text{ m}^2