Logo
Overview

Comparing Fractions

January 15, 2025
1 min read

Case 1: Same Denominator

If the denominators (fractional units) are the same, just compare the numerators.

47 vs 67\frac{4}{7} \text{ vs } \frac{6}{7}

Since 6>46 > 4, clearly 67>47\frac{6}{7} > \frac{4}{7}.

Case 2: Same Numerator

If the numerators are the same (same number of pieces), compare the denominators. Remember: Larger denominator = Smaller pieces.

34 vs 37\frac{3}{4} \text{ vs } \frac{3}{7}

Shares of 14\frac{1}{4} are bigger than shares of 17\frac{1}{7}. So 34>37\frac{3}{4} > \frac{3}{7}.

Case 3: Different Numerators and Denominators

To compare 45\frac{4}{5} and 79\frac{7}{9}, we must make their units (denominators) the same.

  1. Find a common multiple for 5 and 9. 5×9=455 \times 9 = 45.
  2. Convert both fractions to have denominator 45.
45=4×95×9=3645\frac{4}{5} = \frac{4 \times 9}{5 \times 9} = \frac{36}{45} 79=7×59×5=3545\frac{7}{9} = \frac{7 \times 5}{9 \times 5} = \frac{35}{45}
  1. Compare: 3645>3545\frac{36}{45} > \frac{35}{45}. Therefore, 45>79\frac{4}{5} > \frac{7}{9}.

Yes

No

Yes

No

Start Comparison

Same Denominator?

Compare Numerators directly

Same Numerator?

Smaller Denominator is Larger Fraction

Find Common Denominator

Convert Fractions