Logo
Overview

Figure It Out: Page 22

April 10, 2024
1 min read

Exercise Set 1

1. Express the number 32400 as a product of its prime factors in exponential form.

Solution: We perform prime factorization of 32400.

32400=324×100=182×102=(2×32)2×(2×5)2=(22×34)×(22×52)=22+2×34×52=24×34×52\begin{aligned} 32400 &= 324 \times 100 \\ &= 18^2 \times 10^2 \\ &= (2 \times 3^2)^2 \times (2 \times 5)^2 \\ &= (2^2 \times 3^4) \times (2^2 \times 5^2) \\ &= 2^{2+2} \times 3^4 \times 5^2 \\ &= 2^4 \times 3^4 \times 5^2 \end{aligned}

2. What is (1)5(-1)^5? Is it positive or negative? What about (1)56(-1)^{56}?

Solution:

  • (1)5=(1)×(1)×(1)×(1)×(1)=1(-1)^5 = (-1) \times (-1) \times (-1) \times (-1) \times (-1) = -1. Since the exponent (5) is odd, the result is negative.
  • (1)56(-1)^{56}. The exponent (56) is even. Therefore, the result is positive (+1+1).

3. Is (2)4=16(-2)^4 = 16? Verify.

Solution: (2)4=(2)×(2)×(2)×(2)(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) =4×4=16= 4 \times 4 = 16 Yes, it is correct.

4. Express the following in exponential form:

  • (i) 6×6×6×6=646 \times 6 \times 6 \times 6 = 6^4
  • (ii) y×y=y2y \times y = y^2
  • (iii) b×b×b×b=b4b \times b \times b \times b = b^4
  • (iv) 5×5×7×7×7=52×735 \times 5 \times 7 \times 7 \times 7 = 5^2 \times 7^3
  • (v) 2×2×a×a=22×a2=(2a)22 \times 2 \times a \times a = 2^2 \times a^2 = (2a)^2
  • (vi) a×a×a×c×c×c×c×d=a3c4da \times a \times a \times c \times c \times c \times c \times d = a^3 c^4 d