Logo
Overview

Laws of Exponents

April 10, 2024
1 min read

Basic Notation

An exponential expression looks like this: ana^n.

  • aa is the Base (the number being multiplied).
  • nn is the Exponent (how many times to multiply the base).
54=5×5×5×5=6255^4 = 5 \times 5 \times 5 \times 5 = 625

Read as: “5 raised to the power of 4”.

1. Multiplying Powers (Same Base)

When you multiply two powers with the same base, you add the exponents.

am×an=am+na^m \times a^n = a^{m+n}

Why? 23×22=(2×2×2)×(2×2)=23+2=252^3 \times 2^2 = (2 \times 2 \times 2) \times (2 \times 2) = 2^{3+2} = 2^5.

2. Power of a Power

When you take a power to another power, you multiply the exponents.

(am)n=am×n(a^m)^n = a^{m \times n}

Why? (23)2=(23)×(23)=23+3=23×2=26(2^3)^2 = (2^3) \times (2^3) = 2^{3+3} = 2^{3 \times 2} = 2^6.

3. Multiplying Powers (Same Exponent)

When multiplying different bases with the same exponent, you can multiply the bases first.

am×bm=(a×b)ma^m \times b^m = (a \times b)^m

Example: 23×53=(2×5)3=103=10002^3 \times 5^3 = (2 \times 5)^3 = 10^3 = 1000.

4. Dividing Powers

When dividing powers with the same base, you subtract the exponents.

am÷an=amna^m \div a^n = a^{m-n}

Why?

2522=2×2×2×2×22×2=2×2×2=23\frac{2^5}{2^2} = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2} = 2 \times 2 \times 2 = 2^3