Logo
Overview

Figure It Out: Grid & Expansions

April 10, 2024
1 min read

1. Multiplication Grid (Page 142)

The grid represents a multiplication table. We are given a 3×33 \times 3 frame centered at pqpq. If the center is pqpq (where pp is row number, qq is column number), the surrounding cells are:

(p1)(q1)(p-1)(q-1)(p1)q(p-1)q(p1)(q+1)(p-1)(q+1)
p(q1)p(q-1)pqpqp(q+1)p(q+1)
(p+1)(q1)(p+1)(q-1)(p+1)q(p+1)q(p+1)(q+1)(p+1)(q+1)

2. Expansions (Page 143)

(i) (3+u)(v3)(3+u)(v-3) =3(v3)+u(v3)= 3(v-3) + u(v-3) =3v9+uv3u= 3v - 9 + uv - 3u

(ii) 23(15+6a)\frac{2}{3}(15 + 6a) =23×15+23×6a= \frac{2}{3} \times 15 + \frac{2}{3} \times 6a =2×5+2×2a= 2 \times 5 + 2 \times 2a =10+4a= 10 + 4a

(iii) (10a+b)(10c+d)(10a + b)(10c + d) =100ac+10ad+10bc+bd= 100ac + 10ad + 10bc + bd

(iv) (3x)(x6)(3-x)(x-6) =3x18x2+6x= 3x - 18 - x^2 + 6x =x2+9x18= -x^2 + 9x - 18

3. Product Unchanged

Find a,ba, b such that (a+2)(b4)=ab(a+2)(b-4) = ab. ab4a+2b8=abab - 4a + 2b - 8 = ab 2b4a=8    b2a=4    b=2a+42b - 4a = 8 \implies b - 2a = 4 \implies b = 2a + 4 Examples:

  1. a=1,b=61×6=6;(3)(2)=6a=1, b=6 \rightarrow 1 \times 6 = 6; (3)(2) = 6.
  2. a=2,b=82×8=16;(4)(4)=16a=2, b=8 \rightarrow 2 \times 8 = 16; (4)(4) = 16.
  3. a=3,b=103×10=30;(5)(6)=30a=3, b=10 \rightarrow 3 \times 10 = 30; (5)(6) = 30.

5. Expansion Patterns

(i) (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2 (ii) (ab)(a2+ab+b2)=a3b3(a-b)(a^2+ab+b^2) = a^3 - b^3 (iii) (ab)(a3+a2b+ab2+b3)=a4b4(a-b)(a^3+a^2b+ab^2+b^3) = a^4 - b^4

Next Identity: (ab)(a4+a3b+a2b2+ab3+b4)=a5b5(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) = a^5 - b^5.