1. Multiplication Grid (Page 142)
The grid represents a multiplication table. We are given a 3×3 frame centered at pq.
If the center is pq (where p is row number, q is column number), the surrounding cells are:
| | |
|---|
| (p−1)(q−1) | (p−1)q | (p−1)(q+1) |
| p(q−1) | pq | p(q+1) |
| (p+1)(q−1) | (p+1)q | (p+1)(q+1) |
2. Expansions (Page 143)
(i) (3+u)(v−3)
=3(v−3)+u(v−3)
=3v−9+uv−3u
(ii) 32(15+6a)
=32×15+32×6a
=2×5+2×2a
=10+4a
(iii) (10a+b)(10c+d)
=100ac+10ad+10bc+bd
(iv) (3−x)(x−6)
=3x−18−x2+6x
=−x2+9x−18
3. Product Unchanged
Find a,b such that (a+2)(b−4)=ab.
ab−4a+2b−8=ab
2b−4a=8⟹b−2a=4⟹b=2a+4
Examples:
- a=1,b=6→1×6=6;(3)(2)=6.
- a=2,b=8→2×8=16;(4)(4)=16.
- a=3,b=10→3×10=30;(5)(6)=30.
5. Expansion Patterns
(i) (a−b)(a+b)=a2−b2
(ii) (a−b)(a2+ab+b2)=a3−b3
(iii) (a−b)(a3+a2b+ab2+b3)=a4−b4
Next Identity:
(a−b)(a4+a3b+a2b2+ab3+b4)=a5−b5.