1. Which is greater: (a−b)2 or (b−a)2?
Answer: They are equal.
Proof: (b−a)=−(a−b). Squaring a negative number makes it positive.
(b−a)2=[−(a−b)]2=(a−b)2
2. Express 100 as difference of two squares
We need a2−b2=100⟹(a+b)(a−b)=100.
Factors of 100 are: (1,100),(2,50),(4,25),(5,20),(10,10).
For a and b to be integers, factors must have the same parity (both even or both odd).
- Pair (2,50):
- a+b=50,a−b=2⟹2a=52⟹a=26,b=24.
- 262−242=676−576=100.
- Pair (10,10):
- a=10,b=0. 102−02=100.
3. Calculating Squares
4062
(400+6)2=160000+36+4800=164836
722
(70+2)2=4900+4+280=5184
1452
(150−5)2=22500+25−1500=21025
10972
(1100−3)2=1210000+9−6600=1203409
1242
(125−1)2=15625+1−250=15376