Logo
Overview

Figure It Out: Identity 1C

April 10, 2024
1 min read

1. Which is greater: (ab)2(a-b)^2 or (ba)2(b-a)^2?

Answer: They are equal. Proof: (ba)=(ab)(b-a) = -(a-b). Squaring a negative number makes it positive. (ba)2=[(ab)]2=(ab)2(b-a)^2 = [-(a-b)]^2 = (a-b)^2

2. Express 100 as difference of two squares

We need a2b2=100    (a+b)(ab)=100a^2 - b^2 = 100 \implies (a+b)(a-b) = 100. Factors of 100 are: (1,100),(2,50),(4,25),(5,20),(10,10)(1,100), (2,50), (4,25), (5,20), (10,10). For aa and bb to be integers, factors must have the same parity (both even or both odd).

  • Pair (2,50)(2, 50):
    • a+b=50,ab=2    2a=52    a=26,b=24a+b = 50, a-b = 2 \implies 2a = 52 \implies a=26, b=24.
    • 262242=676576=10026^2 - 24^2 = 676 - 576 = 100.
  • Pair (10,10)(10, 10):
    • a=10,b=0a=10, b=0. 10202=10010^2 - 0^2 = 100.

3. Calculating Squares

4062406^2 (400+6)2=160000+36+4800=164836(400+6)^2 = 160000 + 36 + 4800 = 164836

72272^2 (70+2)2=4900+4+280=5184(70+2)^2 = 4900 + 4 + 280 = 5184

1452145^2 (1505)2=22500+251500=21025(150-5)^2 = 22500 + 25 - 1500 = 21025

109721097^2 (11003)2=1210000+96600=1203409(1100-3)^2 = 1210000 + 9 - 6600 = 1203409

1242124^2 (1251)2=15625+1250=15376(125-1)^2 = 15625 + 1 - 250 = 15376