Logo
Overview

Figure It Out: Area & Patterns

April 10, 2024
1 min read

Area of Dashed Region

The figure shows a rectangle with a corner removed (L-shape). Let outer dimensions be pp and s+rs+r. Inner cutout dimensions are prp-r and ss.

Method 1 (Subtraction): Total Area - Cutout Area p(s+r)s(pr)p(s+r) - s(p-r) =ps+prsp+sr= ps + pr - sp + sr =pr+sr=r(p+s)= pr + sr = r(p+s)

Method 2 (Addition of Rectangles): Split into bottom rectangle (s×rs \times r) and side rectangle (p×rp \times r). sr+pr=r(s+p)sr + pr = r(s+p)

Calculation: p=6,r=3.5,s=9p=6, r=3.5, s=9. Area =3.5(6+9)=3.5×15=52.5= 3.5(6 + 9) = 3.5 \times 15 = 52.5.

Figure It Out 2 (Expansions)

(i) (p1)(p+11)(p-1)(p+11) =p2+11pp11=p2+10p11= p^2 + 11p - p - 11 = p^2 + 10p - 11

(ii) (3a9b)(3a+9b)(3a-9b)(3a+9b) Difference of squares: (3a)2(9b)2=9a281b2(3a)^2 - (9b)^2 = 9a^2 - 81b^2.

(iii) (2y+5)(3y+4)-(2y+5)(3y+4) [6y2+8y+15y+20]=(6y2+23y+20)-[6y^2 + 8y + 15y + 20] = -(6y^2 + 23y + 20)

(iv) (6x+5y)2(6x+5y)^2 36x2+60xy+25y236x^2 + 60xy + 25y^2

(v) (2x12)2(2x - \frac{1}{2})^2 4x22(2x)(12)+14=4x22x+0.254x^2 - 2(2x)(\frac{1}{2}) + \frac{1}{4} = 4x^2 - 2x + 0.25