Area of Dashed Region
The figure shows a rectangle with a corner removed (L-shape).
Let outer dimensions be p and s+r.
Inner cutout dimensions are p−r and s.
Method 1 (Subtraction):
Total Area - Cutout Area
p(s+r)−s(p−r)
=ps+pr−sp+sr
=pr+sr=r(p+s)
Method 2 (Addition of Rectangles):
Split into bottom rectangle (s×r) and side rectangle (p×r).
sr+pr=r(s+p)
Calculation:
p=6,r=3.5,s=9.
Area =3.5(6+9)=3.5×15=52.5.
(i) (p−1)(p+11)
=p2+11p−p−11=p2+10p−11
(ii) (3a−9b)(3a+9b)
Difference of squares: (3a)2−(9b)2=9a2−81b2.
(iii) −(2y+5)(3y+4)
−[6y2+8y+15y+20]=−(6y2+23y+20)
(iv) (6x+5y)2
36x2+60xy+25y2
(v) (2x−21)2
4x2−2(2x)(21)+41=4x2−2x+0.25