Logo
Overview

Solution: Page 264-266 (Explorations)

April 10, 2024
2 min read

Page 264: Border Sums

Q2. Complete the grids.

Grid 1 (Border Sum +4)

  • Corner -10, -5, 9.
  • Need to fill empty cells so rows/cols sum to +4.
  • Top Row: 10+x+y=4-10 + x + y = 4.
  • This requires trial and error based on the full grid structure provided in the book.
    • Note: Without the exact visual of empty cells, we solve logic generally.
    • If Left Column is 10++9=4-10 + \dots + 9 = 4, missing middle is +5+5.

Page 265: Figure it Out

1. Integers between pairs (increasing order):

  • a. 0 and -7: 6,5,4,3,2,1-6, -5, -4, -3, -2, -1.
  • b. -4 and 4: 3,2,1,0,1,2,3-3, -2, -1, 0, 1, 2, 3.
  • c. -8 and -15: 14,13,12,11,10,9-14, -13, -12, -11, -10, -9.
  • d. -30 and -23: 29,28,27,26,25,24-29, -28, -27, -26, -25, -24.

2. Three numbers sum to -8:

  • Example: 2,3,3-2, -3, -3.
  • Example: 10,+1,+1-10, +1, +1.

3. Dice Sums (Faces: -1, 2, -3, 4, -5, 6)

  • Smallest Sum: (5)+(5)=10(-5) + (-5) = -10.
  • Largest Sum: 6+6=126 + 6 = 12.
  • Impossible Numbers:
    • Can we get 11? Need 5+65+6 (No 5). Need 6+56+5 (No 5). Need 4+74+7 (No 7). So 11 is impossible.
    • (Requires checking all combinations).

Page 266: Sequences

6. Complete the sequences:

  • a. -40, -34, -28, -22… (Adding +6 each time)
    • Next: -16, -10, -4.
  • b. 3, 4, 2, 5, 1, 6, 0, 7… (Pattern: Alternate +1, -2, +3, -4…)
    • Actually, look at alternating terms:
    • Odd pos: 3, 2, 1, 0, -1, -2. (Subtract 1)
    • Even pos: 4, 5, 6, 7, 8, 9. (Add 1)
    • Next 3 terms: -1, 8, -2.
  • c. …, 12, 6, 1, -3, -6…
    • 12 to 6 (-6)
    • 6 to 1 (-5)
    • 1 to -3 (-4)
    • -3 to -6 (-3)
    • Next: -6 to ? (-2) \rightarrow -8.
    • Next: -8 to ? (-1) \rightarrow -9.
    • Previous terms: Need to subtract -7 (191219 \to 12) and -8 (271927 \to 19). So starts with 27, 19.