Tokens and Zero Pairs
Imagine we have two types of tokens:
- Positive Token (+): Represents (e.g., Green/Red).
- Negative Token (-): Represents (e.g., Red/Blue).
The Zero Pair
One positive token and one negative token cancel each other out. Their sum is zero.
Addition with Tokens
Task: Add
- Place 3 positive tokens:
(+) (+) (+) - Place 2 negative tokens:
(-) (-) - Group them into zero pairs.
- Pair 1:
(+)and(-)Cancel. - Pair 2:
(+)and(-)Cancel.
- Pair 1:
- What is left? One
(+).- Result: .
Subtraction with Tokens
Task: Subtract
- Start with 3 positive tokens:
(+) (+) (+) - We need to “take away” 2 negative tokens.
- Problem: We don’t have any negative tokens to take away!
- Solution: Add Zero Pairs. Adding zero pairs doesn’t change the value.
- Add 2 zero pairs:
(+) (-)and(+) (-). - Now we have:
(+) (+) (+)and(+) (-)(+) (-).
- Add 2 zero pairs:
- Now, take away the 2 negative tokens
(-) (-). - What is left?
- Original
(+) (+) (+)PLUS the two positives from the zero pairs(+) (+). - Total: 5 Positives.
- Result: .
- Original
This proves why .