Logo
Overview

The Token Model

April 10, 2024
1 min read

Tokens and Zero Pairs

Imagine we have two types of tokens:

  • Positive Token (+): Represents +1+1 (e.g., Green/Red).
  • Negative Token (-): Represents 1-1 (e.g., Red/Blue).

The Zero Pair

One positive token and one negative token cancel each other out. Their sum is zero.

(+1)+(1)=0(+1) + (-1) = 0

Addition with Tokens

Task: Add (+3)+(2)(+3) + (-2)

  1. Place 3 positive tokens: (+) (+) (+)
  2. Place 2 negative tokens: (-) (-)
  3. Group them into zero pairs.
    • Pair 1: (+) and (-) \rightarrow Cancel.
    • Pair 2: (+) and (-) \rightarrow Cancel.
  4. What is left? One (+).
    • Result: +1+1.

Calculation

+
+
+
-
-

Result: +1

Subtraction with Tokens

Task: Subtract (+3)(2)(+3) - (-2)

  1. Start with 3 positive tokens: (+) (+) (+)
  2. We need to “take away” 2 negative tokens.
  3. Problem: We don’t have any negative tokens to take away!
  4. Solution: Add Zero Pairs. Adding zero pairs doesn’t change the value.
    • Add 2 zero pairs: (+) (-) and (+) (-).
    • Now we have: (+) (+) (+) and (+) (-) (+) (-).
  5. Now, take away the 2 negative tokens (-) (-).
  6. What is left?
    • Original (+) (+) (+) PLUS the two positives from the zero pairs (+) (+).
    • Total: 5 Positives.
    • Result: +5+5.

This proves why 3(2)=3+2=53 - (-2) = 3 + 2 = 5.