Logo
Overview

Figure It Out: Divisibility & Roots

April 10, 2024
2 min read

Divisibility by 9 (Page 126)

1. Check Divisibility by 9:

  • (i) 123: Sum 1+2+3=61+2+3=6 (No).
  • (ii) 405: Sum 4+0+5=94+0+5=9 (Yes).
  • (iii) 8888: Sum 32 (No).
  • (iv) 93547: Sum 28 (No).
  • (v) 358095: Sum 30 (No).

2. Smallest multiple of 9 with no odd digits.

  • Digits must be even (0,2,4,6,80, 2, 4, 6, 8).
  • Sum must be 9? Impossible with only even numbers.
  • Sum must be 18.
  • Smallest number requires fewest digits, smallest leading digit.
  • Try 288: Sum 18. Even digits. Answer: 288.

3. Multiple of 9 closest to 6000.

  • 6000÷96000 \div 9: Remainder is sum of digits 66.
  • 60006=59946000 - 6 = 5994. (Distance 6).
  • Next multiple: 5994+9=60035994 + 9 = 6003. (Distance 3).
  • Answer: 6003.

4. Multiples of 9 between 4300 and 4400.

  • First multiple: Sum of 43xy43xy needs to be 9 or 18.
  • 4+3=74+3=7. Need 2 more. 43024302.
  • Last multiple: 43924392.
  • Sequence: 4302,431143924302, 4311 \dots 4392.
  • Count: 439243029+1=10+1=11\frac{4392 - 4302}{9} + 1 = 10 + 1 = 11.

Digital Roots (Page 131)

1. Digital root of 8-digit number is 5.

  • Add 10. +10+10 adds 1+0=11+0=1 to the root.
  • New root = 5+1=65 + 1 = 6.

2. Sequence adding 11.

  • Adding 11 is like adding 2 to the digital root (since 1+1=21+1=2).
  • Sequence: x,x+2,x+4x, x+2, x+4 \dots (mod 9).

3. Root of 9a+36b+139a + 36b + 13.

  • 9a9a and 36b36b are multiples of 9. Their digital root contribution is 9 (or 0).
  • Only 13 matters. Root of 13=1+3=413 = 1+3 = 4.
  • Answer: 4.

4. Conjectures:

  • (i) Parity: A number and its digital root do not always share parity (e.g., 12 is even, root 3 is odd). But NRoot(N)N - \text{Root}(N) is always a multiple of 9.
  • (ii) Remainder: Digital root is the remainder mod 9.