1. If 31z5 is a multiple of 9.
Sum: 3+1+z+5=9+z.
For divisibility by 9, 9+z must be 9 or 18.
z=0 or z=9. Both work.
2. Snehal’s Claim (Mod 12 and 8).
- Num 1: 12k+8.
- Num 2: 12m−4.
- Sum: 12(k+m)+4.
- Is 12(k+m)+4 divisible by 8?
- 12 is divisible by 4, not 8.
- Example: k=0,m=1. Sum = 8+8=16 (Yes).
- Example: k=1,m=1. Sum = 20+8=28 (No, 28 is not div by 8).
- Conclusion: False.
3. Sum of two multiples of 3.
Let 3a and 3b. Sum 3(a+b).
- If (a+b) is even, sum is div by 6.
- If (a+b) is odd, sum is not div by 6.
5. 48a23b is multiple of 18.
- Even (b must be even: 0, 2, 4, 6, 8).
- Divisible by 9: 4+8+a+2+3+b=17+a+b.
- 17+a+b must be 18 or 27.
- a+b=1 or a+b=10.
- Check pairs with even b:
- b=0→a=1,a=10(X)
- b=2→a=−1(X),a=8
- b=4→a=6
- b=6→a=4
- b=8→a=2
- Pairs (a,b): (1,0),(8,2),(6,4),(4,6),(2,8).
6. 3p7q8 divisible by 44.
- Divisible by 4: Last two digits q8. q must be even (0,2,4,6,8).
- Divisible by 11: (3+7+8)−(p+q)=18−(p+q) must be 0, 11, etc.
- p+q=7 or p+q=18.
- If q is even:
- q=0→p=7.
- q=2→p=5.
- q=4→p=3.
- q=6→p=1.
- q=8→p=−1 (No) or p+q=18→p=10 (No).
- Solutions (p,q): (7,0),(5,2),(3,4),(1,6).
15. Cryptarithms
(i) EF x E = GGG
- GGG=111×G=37×3×G.
- Since E is a single digit, EF is 2-digit.
- Try E=3: EF×3=GGG. 37×3=111.
- Fits: E=3,F=7,G=1. (37×3=111).
(ii) WOW x 5 = MEOW
- W×5 ends in W. W must be 0 or 5.
- If W=0: 0O0 (Invalid first digit).
- So W = 5.
- 5O5×5=MEO5.
- 5×5=25 (Carry 2).
- 5×O+2 ends in O.
- 5O+2≡O(mod10).
- Only solution is odd O where 5O ends in 5. 5+2=7. No.
- Wait, 5×2=10→0. 5×7=35→5.
- Let’s test digits:
- O=2:5×2+2=12 (O=2). Works.
- O=7:5×7+2=37 (O=7). Works.
- Case 1 (O=2): 525×5=2625. M=2,E=6,O=2,W=5. (Matches O=2).
- Case 2 (O=7): 575×5=2875. M=2,E=8,O=7,W=5. (Matches O=7).
- Both are valid solutions.