Logo

Figure It Out: Cryptarithms & Logic

April 10, 2024
2 min read

1. If 31z5 is a multiple of 9. Sum: 3+1+z+5=9+z3+1+z+5 = 9+z. For divisibility by 9, 9+z9+z must be 9 or 18. z=0z=0 or z=9z=9. Both work.

2. Snehal’s Claim (Mod 12 and 8).

  • Num 1: 12k+812k + 8.
  • Num 2: 12m412m - 4.
  • Sum: 12(k+m)+412(k+m) + 4.
  • Is 12(k+m)+412(k+m) + 4 divisible by 8?
  • 1212 is divisible by 4, not 8.
  • Example: k=0,m=1k=0, m=1. Sum = 8+8=168 + 8 = 16 (Yes).
  • Example: k=1,m=1k=1, m=1. Sum = 20+8=2820 + 8 = 28 (No, 28 is not div by 8).
  • Conclusion: False.

3. Sum of two multiples of 3. Let 3a3a and 3b3b. Sum 3(a+b)3(a+b).

  • If (a+b)(a+b) is even, sum is div by 6.
  • If (a+b)(a+b) is odd, sum is not div by 6.

5. 48a23b is multiple of 18.

  • Even (b must be even: 0, 2, 4, 6, 8).
  • Divisible by 9: 4+8+a+2+3+b=17+a+b4+8+a+2+3+b = 17+a+b.
  • 17+a+b17+a+b must be 18 or 27.
  • a+b=1a+b = 1 or a+b=10a+b = 10.
  • Check pairs with even bb:
    • b=0a=1,a=10(X)b=0 \to a=1, a=10(X)
    • b=2a=1(X),a=8b=2 \to a=-1(X), a=8
    • b=4a=6b=4 \to a=6
    • b=6a=4b=6 \to a=4
    • b=8a=2b=8 \to a=2
  • Pairs (a,b): (1,0),(8,2),(6,4),(4,6),(2,8)(1,0), (8,2), (6,4), (4,6), (2,8).

6. 3p7q8 divisible by 44.

  • Divisible by 4: Last two digits q8q8. qq must be even (0,2,4,6,80, 2, 4, 6, 8).
  • Divisible by 11: (3+7+8)(p+q)=18(p+q)(3+7+8) - (p+q) = 18 - (p+q) must be 0, 11, etc.
  • p+q=7p+q = 7 or p+q=18p+q = 18.
  • If qq is even:
    • q=0p=7q=0 \to p=7.
    • q=2p=5q=2 \to p=5.
    • q=4p=3q=4 \to p=3.
    • q=6p=1q=6 \to p=1.
    • q=8p=1q=8 \to p=-1 (No) or p+q=18p=10p+q=18 \to p=10 (No).
  • Solutions (p,q): (7,0),(5,2),(3,4),(1,6)(7,0), (5,2), (3,4), (1,6).

15. Cryptarithms (i) EF x E = GGG

  • GGG=111×G=37×3×GGGG = 111 \times G = 37 \times 3 \times G.
  • Since EE is a single digit, EFEF is 2-digit.
  • Try E=3E=3: EF×3=GGGEF \times 3 = GGG. 37×3=11137 \times 3 = 111.
  • Fits: E=3,F=7,G=1E=3, F=7, G=1. (37×3=11137 \times 3 = 111).

(ii) WOW x 5 = MEOW

  • W×5W \times 5 ends in WW. WW must be 0 or 5.
  • If W=0W=0: 0O00O0 (Invalid first digit).
  • So W = 5.
  • 5O5×5=MEO55O5 \times 5 = MEO5.
  • 5×5=255 \times 5 = 25 (Carry 2).
  • 5×O+25 \times O + 2 ends in OO.
    • 5O+2O(mod10)5O + 2 \equiv O \pmod{10}.
    • Only solution is odd OO where 5O5O ends in 5. 5+2=75+2=7. No.
    • Wait, 5×2=1005 \times 2 = 10 \to 0. 5×7=3555 \times 7 = 35 \to 5.
    • Let’s test digits:
    • O=2:5×2+2=12O=2: 5 \times 2 + 2 = 12 (O=2O=2). Works.
    • O=7:5×7+2=37O=7: 5 \times 7 + 2 = 37 (O=7O=7). Works.
  • Case 1 (O=2): 525×5=2625525 \times 5 = 2625. M=2,E=6,O=2,W=5M=2, E=6, O=2, W=5. (Matches O=2).
  • Case 2 (O=7): 575×5=2875575 \times 5 = 2875. M=2,E=8,O=7,W=5M=2, E=8, O=7, W=5. (Matches O=7).
  • Both are valid solutions.