Logo
Overview

Digits in Disguise (Cryptarithms)

April 10, 2024
1 min read

What are Cryptarithms?

Cryptarithms are puzzles where digits are replaced by letters. Rules:

  1. Each letter represents a unique digit (090-9).
  2. The first digit of a number cannot be 0.
  3. Standard arithmetic rules apply.

Example 1: Addition

A 1+ 1 BB 0\begin{array}{c} \quad A \ 1 \\ + \ 1 \ B \\ \hline \quad B \ 0 \end{array}

Solution:

  1. Units Column: 1+B1 + B ends in 00.
    • 1+B=10    B=91 + B = 10 \implies B = 9.
    • Carry over 1.
  2. Tens Column: 1(carry)+A+1=B1 (\text{carry}) + A + 1 = B.
    • Since B=9B = 9, 2+A=9    A=72 + A = 9 \implies A = 7.
  3. Check: 71+19=9071 + 19 = 90. Correct.

Example 2: Multiplication

A B×5C A B\begin{array}{c} \quad A \ B \\ \times \quad \quad 5 \\ \hline \quad C \ A \ B \end{array}

Analysis:

  1. Units Digit: B×5B \times 5 ends in BB.
    • Possible values for BB: 00 or 55.
  2. If B = 0: A0×5=CA0A0 \times 5 = CA0.
    • 5×A5 \times A ends in AA. Possible AA: 55 (since 5×5=255 \times 5 = 25).
    • If A=5,B=0A=5, B=0: 50×5=25050 \times 5 = 250.
    • C=2,A=5,B=0C=2, A=5, B=0. Fits the pattern CABCAB.
  3. If B = 5: A5×5=CA5A5 \times 5 = CA5.
    • 5×5=255 \times 5 = 25 (Carry 2).
    • (5×A)+2(5 \times A) + 2 ends in AA.
    • Try A=2A=2: (5×2)+2=12(5 \times 2) + 2 = 12. Ends in 2.
    • If A=2,B=5A=2, B=5: 25×5=12525 \times 5 = 125.
    • C=1,A=2,B=5C=1, A=2, B=5. Fits.

Answer: Two solutions exist (50×5=25050 \times 5 = 250 or 25×5=12525 \times 5 = 125).